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Abstract - Spacecraft design optimizat ion
is a difficult problem, due to the
complexity of optimization cost surfaces,
and the human expertise in optimization
that is nccessary in order to achicve good
results.

In this paper, we propose the usc of a set
of generic, metaheuristic optimization
algorithms (e.g., genetic algorithms,
simulated annealing), which is configured
for a particular optimization problem by an
adapt ive problem solver based on artifici a
intclligence  and  machine  lcarning
techniques. We describe work in progress
on OASIS, as ystem for adapt i vc problem
solving, based on these principles.
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1. INTRODUCTION

Man y aspects of spacecraft designcan be
viewed as instances of crest rained
opt imizat ion problems. Gi ven a set of

decision  variables X anti a Set of
constraints C (m X, the constrained
optimization is the problem of assigning
values (o X 1o minimize or maximize an
objective function J (X), subject to the
constraints C.

Spacecraft design opt imization is difficult
using current  optimization  met hods
because:

. Current methods require a Significant
amount of manual customization by
the users in order to be successful, and

. Current methods are not well suite.(i for
mixed discrete/continuous, non-
smooth, and possibly probabilistic cost
surfaces that can arise in many design
opt imization problems.

WC. arc  currently  developing  the
Optimization Assistant (OASIS), a toolfor
automated space.craft design opt i mization
that addicsses these two issue.s. The goal
of OASIS is tofacilitate rapid “what-i~’
analysis ~ of  spacecraft  design by
developing a widely applicable, spacecrafl
design opt imization system  tha
maximizes the automation of the
optimization process, and minimizes the
amount of customization require.(i by the
user.



OASIS consists of anintegrated suite Of
global optimization algorithms that are
appropriate.  for mm-smooth, possibly
probabilistic, mixed discrete/continuous
cost surfaces, andan intelligent agent that
decides how to apply hese algorithms to a
particular problem. Given a particular
spacecraft design optimization problem,
OASIS performs a  "meta-level”
optimization in order to:
. Sclectan appropriate optimization
technique to apply to the problem, and
. Automatically adapt (customize)the
technique to fit the problem.

The rest of this paper is organized as
follows.  Scction 2 dc.scribes the
application of metaheuristic algorithms to
optimization, and its problems. In Section
3, wc define the framework of adapti ve
problem solving that we adopt for OASIS
and describe related work in the area.
Scction 4 presents an overview of the
OASIS system architecture, and describes
our approach to solving the adaptive
solving problem task. In Scction 5, we
describe two spacecrafl design
opt imization problems which arc currently
being used as testbed applications for
OASIS: the NASA Ncw Millennium DS-2
Mars Microprobe, and tile Nept une Orbiter
spacecraft.

2. OPTIMIZATION USING METABEURISTICS

Although opt imization is a mat urc ficld
that has been studicd extensively by
rescarchers, there arc a number of open,
fundamental problems in the practical
application of optimization techniques.

1 ‘irst, the. problem of global optimization
on difficult cost surfaces IS poorly
understood. The optimization of smooth,

convex cost functions is well understood,
and cfficient algorithms for optimization
(m time. surfaces have been developed.

1 lowever, these traditional  approaches
often perform poorly on cost surfaces with
many local optima, since they tend to get
stuck 011 local optima. Unfortunately,
many rcal-world optimization problems
have a such"rugged" cost surface. with
many local optima, and arc thus difficult
problems for traditional approaches to
opt tmizat ion.

Sccond, many rcal-world optimization
problems ar ¢ black-box optimization
problems, in which the stracture of the
cost function is opague. That is, it iS not
possible to directly analyze. the. cost
surface by analytic means in order to guide
an optimization algorithm. For example,
F(x) can be computed by a complex
simulation about which the optimization
algorithm has noinformation (e.g., to
evaluate a candidat ¢ spacccraft design, we
could simulate its operations using legacy
FORTRAN code about which very 1 it tle is
known cxcept for its J/O specifications).
1 hack-box optimization problems are
t herefore chal lengi ng because current ly
known  agorithms  for  black-box
optimization arc essentialy "blind" search
algorithms-- instcad of being guided by
direct anal ysis of t he cost surf ace., they
mustsample the. cost surface in order to
i ndirect 1y obtain usefui i nformation about
the cost surface.

Recent ly, there has been much research
activity in so-called  metaheuristic
algorithms such as simulated anncaling
[15], tabu search [7,8] and genetic
algorithms [9] for global optimization.
These are  toosely defined, "general-
purposc” heuristics for optimization that
proceed by iteratively sampling a cost



and various

surface,
mechanisms for escaping local optima,
Although these algorithms have been

implement

shown t o be successful on n umerou s
applications with difficult cost surfaces,
the behavior of these algorithms is still
poorly understood. Successful application
of these mectaheuristics toa particular
problem requires
1) the selection of the most appropri ate
met ahcuristic for the problem, and
?) intelligent  configuration  of  the.
mctaheuristic by sclecting appropriate.
values for various cent rol parameters
(e.g., temperature cooling schedule for
simulated annealing).
Currently, successful application of
metahcuristics arc often the result of an
ilcrative cycle in which a rescarcher or
practitioner selects/adjusts a number of
different met aheuristic/cont rol parameter
combinations on aproblem, observes the.
resu 1 ts, and repeats this process unti |
sat i sfactory results are obt ained. “1 ‘his
process of selecting and configuring a
mctahcuristic to obtain good results on a
given problem is usually time-consuming,
and requires  a significant amount of
optimization expertise (which is often
very costly to obtain). As aresult, in many
cascs, the. cost of successfully applying
mctaheuristic techniqgues cm  black-box
problems can be prohibitively expensive,

Onc might wonder whether there is some
super-metaheuristic  and  a  perfect
configuration of this ultimate-
metaheuristic,  which  outperforms  all
others f o r all problems of interest, or
whether it is at least possible to
characterize the performance  of
metaheuristic configurations in general
The current belief in the majority of the
optimization research community is that
this is extremely unlikely (although it not

likely that this can ever be formally
proved, duc to the empirical nature of the
question). ' This is supported by related
rc.cent theoretical work such as [24], which
show that over all possible cost surfaces,
the ecxpected performance  of  dl
optimization agorithms are exactly equal.
Although it is possible that “all problems
of interest” (inour context, all nontrivia
spacecraft designoptimization problems)
rc.fleets a particular subset of all possible
costsurfaces for which some met aheuri lit
configuration dominates all others, we
strongly believe that this is not the case.
M4s our assumption throughout this
paper is that to obtain the best
performance  for a particular  problem
instance, it is necessa ry to select a
metaheuristic and configure it so that it
matches the structure of the cost surface of
the instance.

3. ADAPTIVE PROBI EM S01 sinG

A natural approach to alleviating this
problem of sclecting and configuring a
metahcuristic for particular applications is
to automate the process. ‘J ‘his is an
i nstance of t he more generic, adaptive
problem solving task which has been
studied by the artificial intelligence
community, in which the task is to
automatically configure aproblem solving

‘ Nevertheless, it is not difficult tofind in the
literature  empirical studies that claim that onc
metaheur istic o1 onc configur alien is betler than
anothict (e.g., [25] boldly claims that “(he abjective
of this papeiis . . to study the general tendencies of
var ious algorithms”, and proceeds by comparing
the per formiance of several metaheuristics on a
scheduling problem. They conclude pithily: “I1
obtaining solutions of higher quality is important,
use Simulated Anncaling or Greedy 1 .ocal Search.
Detailed parameter tuning is not important for
Simulated Annealing and Greedy ocal Scarch
provided that sufficient amount of computational
lime is available..”



system (such as an optimization system),
In [his section, we give the standard
definition  the adaptive problem solving
task, andreview previous approaches i n
the litcrature. We  then  discuss  a
generalization  of  adaptive  problem
solving, which is the framework we will
adopt for the metahcuristic application
problem in spacecraft design optimization.

Before discussing, approaches to adaptive
problem solving, wc formally stale the
standard definition of the task (as propose.(i
by [11, 12, 17, 23]. Adaptive problem
solving requires a flexible problem sol ver,
meaning t he problem sol ver possesses
control decisions that may be. resolvedin
alternative ways. Given a flexible problem
solver, 1'S, with scveral control points,
CP,.. CP, (where cach cont 1<01 point CP;
corresponds 1o a particular control
decision), and a sct of values for cach
control point, {M; ... M,,k/?, a control
strategy defines the overal | behavior of the
problem solver. 1 et PSsar be  the
problem solver operating under a
particular control stratcgy.

The quality of aproblem solving strategy
i s defined in terms of the decision-
theoretic notion of expected utility. 1 et
U(PSsirar, d),be a real valued utility
function that is a measure of the goodness
of the behavior of the problemsolver on a
specific problem (1.°More general | vy,
expecteduti | ity can be defined formally
over a distribution of problems D:

" Note that a method m a'y consist of smalle
clements so that a method may be a set of control
rules or a combination of heuristics.

' We assume that the problem Solved is run for a

finitec amount of lime, and is eventually terminated.

EplUPS g = D UPS gy nr d) X pr(d)

deD

The goal of this standard formulation of
adaptive problem solving can be expressed
as. given a problem distribution D, find
some control strategy in the space of
possible strategies that maximizes thc
expected utility of the problem solver. For
example, for the problem of configuring a
metahcuristic, say, a genetic algorithm, in
a desigh optimization system, control
points include: the population size, the
crossover rate, and the mutation rate, ctc.
Utility might be defined as the quality of
the design generated by the optimizer.
Note that a number of approachesto
adapting control points such as the
population size of a GA 121], have been
proposal in the literature. in our
framework, weconsider such strategies to
be values of control points (c.g., a
particular implementation of an adaptive
temperature schedule is one of the possible
values for the temperature  schedule
control point for the simulated annealing
metaheuristic.

Several approaches to adaptive problem
solving have been discussed in the
1iterature. ‘1 he first, asyntactic approach,
iSsto preprocess a problem-solving domain
into a more efficient form, basal solely on
the domain’s syntactic structure. For
cxample, 1 izioni’s STATIC system
analyzes @ portion of a planning domain’s
deductive closure to conjecture a set of
search control heuristics [3]. Dechter and
Pcarl dc.scribe a class of constraint
satisfaction techniques that preprocess a
general class of problems into amore
efficient form [2]. More recent work bas
focused onrccognizing those stractural
propertics that influence t he effect iveness
of different hecuristic methods [4, 14, 22].



The goal of this rescarch is to provide a
problem solver with what is cssentially a
big lookup table, specifying which
heuristic strategy to use based on some
easily recognizable syntactic features of a
domain. While this latter approach seems
promising, work in this area is still
preliminary and has focused primarily on
artificial applications. The disadvantage of
purcly syntactic techniques is that they
ignore a potentially important source of
information, the distribution of problems.
Furthermore, current syntactic approaches
to this problem arc specific to a particular,
often  unarticulated,  utility  function
(usually problem-solving cost) . FYor
cxample, allowing the utility function to
be a user specified parameter would
requirc a significant and problematic
extensionof these.mc.tho(ls.

The second approach, which we call a
generative  approach, 1S 1o generale
cus(om-made heuristics inresponscto
carcful, automatic, anayss of past
problem-solving  attempts.  Generative
approaches con sider not only the stracture
of the domain, but also structures that arise
from the problem solver interacting with
specific problems from the domain. This
approach is exemplificd by SOAR [16]
and  PRODIGY/EBI, [18].  These
techniques analyze past problem-solving
traces and conjectures  heuristic control
rules in response to particular problem
solving incfficiencies. Such approaches
can cffectively exploit the idiosyncratic
structure of a domain through this careful
analysis.  The  limitation of  such
approaches 1S that they have typically
focused on gencrat ing heurist ics in
response to particular problems and have
not well addressed the issuc of adapting to

adistribution of problems.” 1 arthermore,
as with the syntactic approaches, thus far
they have been directed towards a specific
utility function.

The third approach is the statistical
approach. These techniques cxplicitly
rcason about performance of different
heuristic strategics across the distribution
of problems. ‘1 hese are generally stat i stical
gcllclatc.-:ill(i-tcst approaches that
estimated the average performance of
different heuristics from a random set of
training  cxamples, and explore  and
explicit space of heuristics with greedy
search techniques. lixamples Of such
systems arc COMPOSHR [11 ], PAL.O
[ 1 2], and the statistical component of
M U] [TI-TAC [ 19]. Similar  approaches
have also been investigated in  the
operations  rescarch  community  [20].
These techniques are easy to use, apply to
a variety of domainsand utility functions,
and can provide strong  Statistical
guarantees about their performance. They
arc limited, however, as they are
computationally expensive, require many
training cxamples to identify a strategy,
and face problems wit hlocal optima.
Furthermore, they typically leave it to the
user to conjccture the space of heuristic
methods (sce [ 19] for a notable exception).

A Generalization Of  Adaptive Problem
Solving

The standard formulation of adaptive
problem solving described above is
applicable. when we want to generate a
*While gencrative approaches canbe trained (m a
problem distribution, learning typically occurs only
within the context of a single problem. These
systems will often learn knowledge which s
helpfulin a particular problem but decrcases utility
overall, nccessitating the use of utility analysis
techniques.



problem solver that will perform Well for a
particular problem distribution. 1 lowever,

the'l’c. arcsome problems with this
formulation that make it inappropriate for
our domain of met ahcuristic appl i cat ion
for spacecraft design optimization.

1 irst, athough the strategy found by an
adaptive problem solver may have good
expected  performance  over  some
distribution of problem instances, there is
no guaranice that the problem sol ver
performs wc]] for any particular instance.
In the domain of design optimization, the
objective i S often to genecrate the best
possible solution for a specific problem
instance, so there is a dgnificant
incompatibility in the objective of the.
problem formulation.

Sccond, the standard adaptive problem
solving formulation implicitly assumes
that only onc specific configuration of the
problem solver will bc applied to a
particular problem instance. 1f the
objective. is to generate the best possible
solution for a problem, then it may bc
worthwhile to try a number of (iiffc.rent
problem solver configurations onthe
problem instance, Indesign optimization,
it i s often worlthwhile to use massive
amounts of computing resources” i norder
tomake significant improvementsin the.
quality of the design, which couldlead to
benefits  that  far outweigh  the
comput at ional resources used to generate
the improvement.

1 ‘inally, the problem solver configuration
found by the standard adaptive problem
solving, formulation is uscful when wc are

*CPU cycles arc ofien quitecheap and readily
available, given the amount o f computation
available (m idle work stationsin many engincering
organizations.

given aproblem instance. thatis “typical”
of the. instancesin the (distribution for
which the problem solver was configured.
However, thismay bc of limited utility if
the problem solver is faced with a instance
which is significantly different from
previously seen instances. This is a
problem in our dom ain, since wc arc.
designing a generic design optimization
tool, for which the (distribution is virtually
unrestricted. One could argue that if an
instance is sufficiently different from the
distribution for which the configuration
was optimized, then Ibis forms the basis
for a new distribution on which to run the
adaptive problem solver (where initially,
the distribution consists of this single, new
instance). Of course, if we allow for the
possibility of maintaining  multiple
problem sol ver configurate ions, one of
which shoul (i be selected depending onthe
distribution to which a particular instance
belongs, this brings up new subproblems
which must be solved, including:

. Given anew problem instance, decide
which (distribution it belongs to.

. Deciding when/whether to “split” an
existing problem distribution into two
or more distributions when additional
problems arc added to the distribution.

}or our problem of mctaheuristic
application for designoptimization, what
is needed then is a task formulation that
maximizes the performance for cach
particular problem instance, and does not
rely on initial assumptions about the
problem distri but ion from wh ich the
instance 1S drawn. Our formulation for
adaptive problem solving is there.fore the
following):

Definition: (Adaptive Problem Solving) -
Ietd be aproblem instance. 1.et P’Ss,,., be
the problem sol ver operat i ng under a



particular control strategy. 1 et U(PSsyand),
be arcal valued utility function that is a
measure. of the goodness of the behavior of
the problem solve.r on d. The task of
adaptive problem solving is tofind a
cent rolstrategy for the problem sol ver that

maximizes U(PSsyancl).  Given a sct of
problem instances D=d0, d],..(h), the task
of adaptive. problem solving is to find
control strategies Strat0, Stratl, . . StratN,
that maximizes:

> U(PSy007, )

el

If we were to treat the set of instances in
the definition above as being samples
drawn from a distribution, this formulation
of ad apti ve problem can bc seen as a
generalization of the. standard formulation,
without the restriction that StratO = Stratl
= StraiN.

The approaches for the  standard
formulation can now be recvaluated with
respect to the new formulation. In general,
if we know of a configurat ion Conf), that
maximizes  expected  utility  over a
distribution 1 of problemsto which a
particular instance d bclongs, then onc
woul(t, by definition, expect (in the
probabilistic sense) that configurationto
perform wcl]] on the instance. Suppose that
our approach to solving the new adaptive
problem solving formulationis to search
the space of configurations to find ancar-
optimal control strategy. Then a useful
heuristic would be to try Conf), first.
Thus, wc can treat solutions to the
standard formulation as heuristic solutions
for our formulat ion of adaptive problem
solving.

4. OASISAR CHITECTURE

OASIS (Optimization Assistant) is an
integrated  soft ware.  architect ure  for
spacccraflt  design  optimization  which
supports adaptive problem solving. The
three major components of OASIS arc:

. A stite of configurable metaheuristics,
. An adapt ive problem solve.r, and
. A spacecraft design model.

We desctibe each of these below.

Spacecraft Design Model

‘1 'hie spacecraft design model is a software
simul at ion of a spacecraft design. ‘1 ‘he.
design model take.s as input decision
variables to be optimized, and outputs an
objective function value, which is assigned
as the result of an arbitrarily complex
computation (i.e., the simulator is a black-
box simulation).

Thus, the design model is the component
of OASIS that is most domain-specific,
and is provided by the cndusers, i.e..,.
spacecraft designers. In order for an
optimization system such as OASIS to be
uscfulin practice., it must support a wide
range of design models, which may consist
of mode.ls implemented using various
languages on different platforms. It is not
feasible to expect spacecraft designers to
implement their models in a particular
language on a particular platform -- if such
inconvenient constraints were imposed,
the optimization system will notbe used
by spacecraft designers.

The Multidisciplinary Integrated Design
Assistant for Space.craft MID AS)[6]isa
graphical design environment that allows a
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Figure 1- Screen shot of a MIDAS methogram (part of the Neptune

Orbiter model)

user to integrate a system of possibly
distributed design  model  components
together using a methogram, a graphical
diagram representing the data flow of the
system. 1 lach node in the methogram
corresponds to adesigh model component,
which may be onc of 1 ) a modelin a
commercial design tool such as IDHAS,
NASTRAN, or SPICL:, 2) a program
writllen in C, C+4, or FORTRAN, or 3) an
embedded methogram (i.e., this allows
mecthograms  to have a hierarchical
structurc).  Inputs  to 110c1cs in  the
mcthogram correspond 1o in *ut paramet ers
for the component represented by the
node, and outputs from a methogram node
correspond to output valucs computed by
the component. M IDAS isimplemented as
a CORBA object, and supports a wide
variety of methods that can be used by
external client systems (e.g., a GUI) to
manipulate the methograms.

This last fecature of MIDAS (i.e., the
CORBA interface which allows client
systems to freely manipulate methograms)
is particularly uscful for the purposes of
designing a  black-box  optimization
system, since it essentially provides the
optimizati (m  system With @ yniform
interfface for any  design model
encapsulated in M 1l JAS. Therefore, our
solution to the problem of supporting a
wide range of design modecls is to support
aninterface to MIDAS. That is, QOASIS is
designed to be an optimization system that
can beuscd opt i mizes any M 11DAS modcl

Thus, the design model, which constitutes

the uscrinputto the OASIS sytem, is

composed of the following:

e A MIDAS methogram that
encapsulates the design model,

. A list of decision variables, as well as
ranges of their possible values (may be
continuous or discrete), anti



« An output from a methogram node that
corresponds  the  user’s  objective
function value.’

Metaheuristic Suite

OA SIS includes a set of configurable
metaheuristics,  which  arc  generic
implementations  of  metaheuristics  that
provide an interface for  dynamic
reconfiguration of their control points at
runtime. Currently, this consists of a
reconfigurable genet ic algori thm and a
reconfigurable simulated annealing/local
search. Thesc are brief |y described below”:

Genetic Algorithin— A genet ic algorithm
works as foll ows: a population of sample
points from the cost surface is generated.
111 a process analogous to biological
evolution, this population is cvolved by
repeatedl y select i ng (based onrel at i ve
opt imal it y) members of the popul at ion for
reproduction, and recombining/m utating to
generatc a new population. The control
pointsof the gene.lic algorithm include: the.
popuiation sizc, the mcthodsused for
sdection, crossover, and mutation
(mcthods include the algorithim, as well as
their control parameters, such as their
frequency of application).

Simulated Annealing/Local Search- 1.ocal
scarch procceds by gencrating an initial

The objective function could either be obtained
directly from one o f the existing outputs in the
methogram, or could be compuled by adding a new
node that computes, e.g., a weightedlincai
combination of’ some sct of output nodes.

"The following is a simplified account - there is
much overlap between metaheuristics, and theit
boundat ics are unclear (it is oflen possible to
consider onc metaheuristic as a
specialization/generalization  of — another).  For
cxample,itis possible tothink of some instances of
localscarch as a special case of genetic algorithm
with a population of 1. Lor clarity, we present
metaheuristics using their “canonical” descriptions.

point on the cost surface, and repeatedly
applying, neighborhood moves (such as
random perturbations, greed y moves, et c,)
to move to (on average) increasingly
optimal points on the cost surface.
Simulated anncaling iS a gencralization of
local search inspired by a physical
metaphor to the process of annealing, in
w hich moves to less optimal points are
taken probabilistically, in accordance with
a temperature schedule. During the carly
part of the anncaling process, the
temperature is high, and moves to less
optimal points arc taken more frequently;
as tile temperaturc IS cooled, the
probability of rejecting moves to poorer
points on the cost surface increases. The
control points of local search/simulated
annc.sling, include met hods for
temperature schedule and the
ncighborhood move generator.

Adaptive Problem Solver

Gi ven a spacceraft design optimization
problem instance in the. form of a design
model, t he adapt i ve problem  solver
component  of OA SIS sclects and
configures a mctahcuristics from its suite
in order to maximize some utility measurc
(usually, this is the quality of the design
found by OASIS).

Inthis section, wc motivate our approach
to adaptive problem solving, anti describe
the architecturc of tile OASIS adaptive
problemsc) ver.

Our approach to adapt ive problem solvi ng
isto view it as a nicta-level heuristic
scarch through the space of  possible
problem sol ver conf | gurat ions, where
candidatc  configurations arc cvaluated
with respect to a utility measure, and the
godl is find aconfiguration that maximizes
this utility mecasure. in principle, it is
possible to do abrLItc-force scarch through



the space of possible problem solver
configurations. However, this is clearly
intractable in genera], since the number of
configurations is exponential in the
number of control points. Consider a
problem solver with ¢ control points, cach
with v values; there are ¢ problem sol ver
configurations. Suppose wc arc given a
problem instance for which the black-box
simulation 1°1111s tocvaluatca single.
candidate design takes an average of 1
scconds. If cach run of the problem solver
on this instance requires n candidate
design evaluations on average, then the
expected time required to search this space
using an unguided, brute force search is
O(ic").

Given t h e cnormous computational
expensc Of searching through t he space of
problem solver configurate ions, onc might
wonder whether the search should/could
be avoided altogether. To avoid scarch
completely, there arc two alternatives. The
first iS to find a super-metaheuristic that
outperforms all others for all problem
instances (and therefore avoid adaptive
problem solving altogether). As discussed
in Section 2, wc reect this solution as
impossible. ‘1 ‘he sccond alternative is a
syntactic, “lookup-table>’" approach:
classify the problem instance as a member
of some class of problems, then apply the
metaheuristic configuration that is known
to work well for this class of problems.
This can work very wc]] if we happen to
h av e studied the class of problems to
which the particul ar inst ance belong, and
wc have available a good technique for
classifying the instance as a member of the
class. 1 lowever, this approach is of limited
utility if wc encounter an instance of a
class that wc know nothing about, or if we
cannot correctly classify the problem as
one that belongs to a class that we have a

good metaheuristic configuraiton® for .
‘1 'hus, apure] y syntactic approach dots not
suffice. AH adapt ive problem solver needs
10 search the space of possible
meltaheuristic  configurations - the
challenge is 1o discover a nd apply enough
heuristic knowledge to the task to make it
more tractable.

What types of heuristic knowledge are
available to be cither acquired from a
human, m through knowledge discovery /
machine learning techniques? Wc identify
three gene.ral classes of knowledge which
arc applicable in this context:

« domain-depend ent knowledge about
the bchavior of metaheuristics in a
given domain,
domain-indepe ndent, meta-knowledge
about optimization, and

« domain-independent,  but  system-
dependent structural knowledge.

Iiach of these types of knowledge are
discussed below:

Domain-dep endent knowledge- This
includes knowledge about the structure of
particular classes of problems, and the
behavior of metaheuristics on particular
problem instances or classes of instances.
Fxamples of heuristics that can be derive
from this type of knowledge include;:

. If a problem instance is in the problem
instance class /1, the.n configuration C
IS promising;
If a problem instance i is in the
problem instance. class, thenit is likely
thatits costsurface is of type S;

* Indeed, the problem of defining useful notions of
classes of problem instances, and classifying a
problem instance as belonging to some particular
class is a challenging pattern recognition problem
in itself.



. If the behavior of a configuration C is
poor, then the instance is likely to bein
instanceclass/;

. If the costsurfacc of the instance
belongs to class S, then the instance is
likely to be ininstance class /.

In addition this class includes, any
knowledge that can be used to classify a
problem instance. as belonging to a
particular class of problems, including
pattern classification heuristics that can be.
used by a problem instance analysis
modulc.

Domain-in dependent knowledge This is a
formalization of the knowledge that
human optimization experts possess about
optimization in general. It includes
knowledge about the behavior of
metahcuristics on particular classes of cost
surfaccs.(), and k nowledge about the
behavior of metahcurist is in general.
Classes of cost surfaces can be defined by
attributes such as therelative number of
local minima, distance relationships
between local minima, etc. Iixamples of
heuristics that can be derived from this
type of knowl edge include:

. If asurfaccof class S, configuration C
is promising;

. If t he behavior of a configuration C is
poor, t hen ,  confi gurat ion ¢’ s
promising;

. If the behavior of configuration C,it is
likely that the cost surfaceisin class S.

Note the difference between classes of problem
instances, and classes of cost surfaces. Cos (
surfaces arc a more abstract, and classes of cost
surfaces can encompass many classes of problems.
For instance, the class o f cost surfaces that are
“bumpy or rugged” includes cost surfaces from a
very large number of classes of probleminstances.

This class of knowledge may not be as
powerful as domain-dependent knowledge.
by itself, since it is more abstract in nature,
and more difficult to apply. For example,
analysis of the cost surface is morc
computationally expensive than syntactic
analysis of the instance, since it requires
cxpensive runs of the black-box simulation
to cvaluate the cost surface. Ilowever, the
apparent success of human optimization
experts Who may not be domain experts
for a particular problem that they are given
must often rely on their body of domain-
i ndependent k nowledge, in combination to
what domain-dependent knowl edge they
can obtain, indicates that this type canbe a
very Usc.fill means of controlling scarch.

Domain-ir idependent,  syst em-dependen 1
structural knowledge- It may be possible
to exploit the syntactic structure of the way
problems are represented in a particular
adaptive problem sol ver. For instance, in
OASIS, for a particular problem instance,
itmay be possible to analyze the struct ure
of its dataflow graph inthc MIDAS
methogram to identify, €.9., dccision
variables that affects a relatively large
number of ot her nodes in the graph, and
hence, may be more important to focus on
than a node which only affects a single
node. At this time, it seems that useful
knowledge of this type. may be extremel y
difficultto acquire, although thisisan area
Of research  that scems  particularly
interesting from the  design/human-
computer i nterface p erspect ives, since it
entails the understanding of how engincers
structurc  simulations  from a graph-
theoretic point of view

The various t ypcs of knowledge described
above can be applied cither direct i y or
indircetly (through chains of inference) as




variable./valuc ordering heuristics'® in a
search algorithm that scarches the space of
metaheuristic configurations.

Wc arc currently investigating several
alternative approaches to representing the
knowledge in OASIS.

The initial version of the OASIS Adaptive
Problem Solver uscs Bayesian networks
[20] as its primary knowledge
representation scheme. Bayesian networks
w e re chosen primarily duc to their clear,
probabilistic semantics, and the flexibility
with which various kinds of inferences
could be performed, and the ability to
scamlessly integrate ncw knowledge and
observations into the knowledge base
cither manually (i.c., entered by a human
expert) or automatically (using machine
learning techniques). In  the initial
implementation, the Bayesian networks arc
manually Constructed. A number of
techniques have recentl y been developed
for lcarning in Baycsian networks [ 13]; we
arc currently investigating the application
of some of these techniques. in addition,
W C arc investigating new approaches to
machine learning that take advantage of
t hespeci @ structure O f the adapti ve
problem solving domain. Yor example,
unlike. most other domains, in which all
the training data for machine learning is
given to a learning, algorithm by an
external source, the adaptive. problem
solving domain is interesting in that it is
possible for the problem solving system to
perform cxperiments and generate new
data, using the. exact same mecchanisms
that arc used to cvaluate metaheuristic
configurate ions.
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control points to change; Valuc ordering heuristics
guide the choice of control point values totry.

Vatiable ordering heuristics guide the choice of

Animportant auxiliary component that is
important for the adaptive problem solving
process, and applicable at various levels of
the OASIS architecture, is the hypothesis
testing module.  Hypothesis testing is a
general problem in statistics. When, for
example, ametaheurstic is probabilistic in
nature (as Is the case with genetic
algorithms and simulated annealing), or
the black-box simulation is stochastic,
then it is important to be able to
cfficiently, accurately test whether one
candidate is better than another (where a
candidate can be., e.g., a mctahcuristic
configuration or a particular design).[ 1]
have proposed scveral efficient methods
f or computing within some confidence
bounds thatone candidate is better than
another according to sonic utility mcasure;
Wc ac  cuwrently  investigating @)
extensions to these techniques, b)
integration of these techniques within our
stochastic metaheuristics, and ¢ ) their
applicability to ournew formulation of
adaptive problem solving.

Finall y, we make use of parallelism and
distributed processing on networks of
workstations inorder to enable adaptive
problem solving. Currently, processes arc
distributed using the Parallel Virtual
Machines message passing package [5] at
the black-box simulation level. For
cx ample, multiple copies of the b] ack box
smulation arc distributed, and arc
exccuted in parallel given different
decison variable assignments (i .c., a
number of candidate designs arc evaluated
in parallel).

5. EXAMPLL SPACECRAEFT DESIGN
OPTIMIZATION PROBLEMS

In this scction, we describe two  specific
spacecraft design opt imization problems to
which we are currently applying tbc



OASIS system. Thefirstisa 10 W-1CVC1
optimization of the physical dimensions of
asoil penctrator microprobe. 1'he second

is a system-level optimization of the
configuration of the communication
system of an orbiter spacecraft, These
cxamples are illustrative of the range of
dif ferentopt i mization problems that ari sC
in spacccraft design.

The Mars Soil Penetrator Microprobe

As partof the NASA Ncw Millennium
program, two microprobes, €ach consisting
of a very low-mass acroshel I and
penetrator system, are planned to launchin
Jaunary, I 9 9 9 (attached to the Mars
Surveyor Jlander),to arrive al Marsin
1Ldccember, 1999, The 3kg probes will
ballistically enter [he. Martian atmosphere
and passively orient themselves to meet
peak heating andimpact requircments.
Upon impacting the Martian surface, the
probes wi 1 Ipunch through the cnt ry
acroshe]l 1 and separate into a fore. - and
aftbody system. The forecbody will reach a
depthof 0.5 to 2 meters, while the aftbody
will  yemain on  the suface.  for
communications.

Fach penetrator system includes a suite of
highly miniaturized components needed
for future micropenetrator net works: ultra

low  temperature  batterics, — power
microclectronics, and advanced
microcontroller, a

microtclec ommunications system and  a
science pay] oad package. (a microlascer
system for detecting subsurface water).

The optimization of physical design
parameters for asoi 1 penet rator based on
these Mars microprobe is the first testbed
for the OASIS system. The microprobe
optimization domaininits entirety is very
complex, involving a three-st age

simulation: stage1- separation analysis
(i .c., separation from the, Mars Surveyor),
stage 2- acrodynamical simulation, stage
3- soil impact andpenetrat ion.  To
illustrate the utility of APS, wc now
briefly describe current work on a
simplificd version of the soil penetration

stage.

Givena number Of parameters describing,
the initial conditions such including the
anglc of attack of the penetrator, the
impact velocity, and the hardness of the
targetsurface, the optimization problem is
to select the total length and outa
diameter of the penctrator, where the
objective is to maximize the ratio of the
depth of penetration to the length of the.
penetrator. We maximize this ratio, rather
than simply maximizing the depth of
penetration, since for the Mars
microprobe scicnce mi ssion, the dept h of
penetration should ideally penetrate at
least the length of the entire penctrator).

Onc of theinitial condition parameters that
has a significant impacton the structure of
the cost surface for this optimization
problem is the. soil number, which
indicates the hardncss of the target surface.
Intuitively, one would expect this to be an
important parameter, since, for example, it
is clearly more difficult to penetrate harder
targets (the penctrator could bounce. off the
target, for example).

Fig. 2 and 3 show a plots of sample points
from the cost surface of this simplificd
penetration problem for two different soil
numbers,  soillNum= 7 (hard), and
sollNum=13(sof). The cost surface for
soilNum=1.? is arclatively smooth surface,
while the cost surface for soilNum=T7is a
much more rugged surface (note that the
cost surface is much more bumpy -
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Figure 2 - Sample points from costsurface for soil penet rat or
microprobe mock]. Plot of ratio of depth of penetration to length of
penetrator. Soil numb.r = 13 (soft soil)

because of the larger number of cost
surface points with a vaue of O,
optimization agorithms are more likely to
get stuckin local maxima). We would
cxpect that a greedy metaheuristic would
be Very successful for the soft surface,
while a successful metaheuristic for the
hard would require  some
mechanism to ecscape local minima,
Therefore, 1o oblainthe best performance
on asimilar problem instance (given a
different soi 1 number, for example), one.
Should  choose and  configure a
metahcuristic to exploit this knowledge
appropriately; this process would benefit
from our the application of our adapt ive
problem solving approach. The soil
number is therefore a problem parameter
that the OASIS adapt ive problem so] ver
canusc as a feature with which to classify

surface

problem instances (i.e., into problems with
soft and hard soil numbers).

The Neptune Orbiter

Neptune orbiter is a mission concept
currently being studicd under the O uter
Planct Orbital Express program at the Jet
Propulsion lLaboratory. The goals of the
mission arc to put a spacecraft in orbit
arou nd Nept une  using  state-of-the-arl
technologics in the aeas  of
telecommunications,  propulsion,  orbit
insertion, and autonomous operations. The
spacecraft is expected to arrive at Neptune.
(30 au.) 5 years after launch in 2005 using,
a Delta Taunch vehicle. The subsystem
requirements include 100 kbps data rate,
solar clectric propulsion, solar
concentrator power source and a cost of
less than $400M in FY 94 dollars.



Because Neptune Orbiter is advancing the
stale-of-the-ar[ in spacecraft development,
the models being used arc assuming a
levelof future technology advancement.
For the initial phasc of the optimization
demonstration, the focus was on the orbital
opcrations of Neptune Orbiter. The launch
and cruise phases of the mission will be
included in the optimiz ation once the
orbiter problem is w c] i understood.’l “hc
driving constraints of the orbiter problem
arc the optical communication aperture,
transmit power and spacccraft mass. “1 'he
transmit power is a direct input into the
i ntegrat cd spacecraft design model. The
other  inputs include the science
observation time per orbit and the data
compression factor. The output of the
model which is being maximized is the
science data volume per orbit. For designs
in wh ich t he spacecraft mass is greater
than 260 Kg, the data volume output is
zero. A spacecraft with a dry mass of
greater than 260 Kg is too heavy to lift on
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the. target launch vehicle. Thus the mass
limit bounds the opt imization problem.
Currently, wc arc using cost models in
conjunction with the simulation of the
orbiter as described above to obtain our
cost function - a quantitative estimate of
the. science return (measured in, e.g.,
volume of scicnce data obtained per dollar
cost of the. spacecraft).

0.SUMMARY ANDCONCI 1 JSION

Designing a widel y applicable tool for
spacecraft  design  optimization is a
significant technical challenge. in this
paper, Wc have proposcd the Usc of
mctahcuristic  optimization  algorithms,
which arc customized for particular
probleminst antes by a process of adaptive
problem solving. By this, wc hope to
provide a desigh optimization tool which
can provide spacccraft designers with the
ability to perform successful design
optimization with minimal human cffort.
We have. described OASIS, our current

Total Length (feet)

Figure 3 - Sample points from cost surface for soil penetrator
microprobe model. Plot of ratio of depth of penctration to length
of penetrator. Soil number -7 (hard soil).



implementation of a system based on these
principles, and discussed many of [he.
technical issues that have ariseninits
design. Adaptive problem solving for
spacecraft design isafertile research arca
with significant potential benefits; this
paper has presented our initial efforts in
this arca.
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